Axiomatisation and Decidability of Multi-Dimensional Dur ation Calculus

Andreas Schafer
Department of Computing Science,
University of Oldenburg, 26111 Oldenburg, Germany
schaefer@informatik.uni-oldenburg.de

Abstract tension of interval temporal logic. In Section 4 we present
two decidable subsets of discre3€, one achieved by im-
We investigate properties of a spatio-temporal logic posing restrictions on the class of models, one by reddricti
based on am-dimensional Duration Calculus tailored for  on the class of formulae.
the specification and verification of mobile real-time sys-
tems. After showing non-axiomatisability, we give a com-
plete embedding im-dimensional interval temporal logic

and present two different decidable subsets, which are im-
portant for tool support and practical use. In this section we introduce the shape calculus proposed

in [13] in a simplified version.
Keywords: Real-time systems, mobile systems, spatial |n Duration Calculus [15] the behaviour of a system is
logic, temporal logic, Duration Calculus modelled by a set of time-dependent variables (obserjables
whose values change in time. Here we adopt this approach
and use boolean observables that are space and time depen-
dent. We may choose to have discrete or continuous time
1. Introduction and space depending on the current application. A priori
we fix the number of spatial and temporal dimensions, say
n then the semantics of an observaldlds given by a tra-
d’ectoryI

2. Shape Calculus

Real-time systems are used in many areas of our life an
their use even increases further, for example in embedde n
systems for cars, train- and traffic controllers. There are I[X]: R — {0, 1}.
numerous well studied formal methods for describing and i, the continuous case or a function with domaif in the
reasoning about such systems, like Duration Calculus (DC)giscrete case.

[15] or timed automata [1]. But the behaviour of many real-

time systems exhibits mobile aspects. Railroad tracks areexample 1 To model a mobile robot moving on the floor,
divided into blocks and it is required that for every moment we need two 5patia| and one tempora| dimension' so we fix
in time each block is occupied by at most one train. Air- ,, — 3. We employ two observabl&sand A. The observ-
planes are required to have a minimum distance during theiraple R is true for a point in space and time if and only if
flight. Or for a mobile robot it might be important, that it the robot occupies this point in space at the given moment

does not enter a certain area by more than 10 cm. in time. Similarly the restricted area is modeled by the ob-
As Duration Calculus has already proven its benefi- servableA.

cial applicability in the area of real-time systems, @an

dimensional extension, the shape calcug@); is proposed As we will measure time and space, we have to guaran-

to grasp this quantitative notion of space and mobility. In tee that an integral exists. So we require a finite varigbilit

this paper we investigate properties of this formalism like property, that is every finite-dimensional interval can be

axiomatisability and decidability. These points are cru- partitioned in finitely many sub-intervals such tias con-

cial as acceptance in practice often requires tool supgort b stant on each sub-interval.

model-checkers or theorem provers. The language dBC is built from state expressions, terms
After giving a short introduction t&C in Section 2, we  and formulae. A state expression characterises a profferty o

show thatSC is not axiomatisable, but nevertheless it can one pointin time and space. They are denoted byd built

be completely axiomatised relative to thelimensionalex-  from boolean combinations of observables. The semantics



is a functionZ[r] : R%, — {0,1} and is defined as a Space
straightforward extension of trajectories of observables

1=

I[-7](2)
I[r A7) (2)

1 - TI[~](2)
I[=1(2) - Z[7'1(2)

Example 2 The state expressiail A —=A describes exactly
the points in space-time where the robot is outside its re-
stricted area.

dj

1€

Aterm§ is either a measuré r, a rigid variabler, the
special symbol;, denoting the length in direction along
¢; or the application of a functiorfi. Usually we will use
functions like summation or multiplication.

0= [m|x|le | f(O1,...,0k)

As usual, the value of a rigid variable is determined by
a valuationy and the set of valuations is denoted Bw!.

Time

Figure 1. Moving robot scenario

iff M =[b1,e1] X...x[b;,e;] x...x[bs,e,] andthereis
am € [b;, e;] such that

The semantics a;s_igns a regl numberrtlo eadimensional I[E (b1, e1] X ... [biym] ... X [bn, en], V) = true and

interval and thus it is a functiaf[f] : Int" x Val — R and

defined in the expected way, i.e. let Z[B](by,ea] x - [m, eq] .. X [bn, €], V) = true

M =[bi,er] X ... [bisei] .. X [bns en] € INE” We define some abbreviations to ease the handllng_. The

everywhere operatdrr| expresses that a state assertion

andV € Val then holds almost everywhere in the interval and the empty in-
terval is denoted by]. Then-dimensional volume is mea-

& sured by the terni.
If)M, V) & / T[] y
M

df df daf
" (=1 (7] = [m=4AL>0 [M=/1=0
I[[gé}]](Mv V) =e; — b
The somewhere operatorz, £’ chops the:-dimensional in-

df
Z[z](M, V) = V() terval twice in the same direction such that in the middle
I[f (6, ... 0] MWV L £ T[6:](M, V) interval F holds.

e O F g true(é;) F (€;) true
Z[0k) (M, V))

The dual globally operator iS¢, defined by
Example 3 The term[ R A —A is the measure of all points

violating the requirement. 0. 4 —Og, - F.

€5

Formulae are interpreted over intervals and as usual for
interval logics, they incorporate a special “chop” oper&o
partition the current interval into two parts. As we conside
a higher dimensional logic, we allow chops along each axis. Example 4 The initial requirement, that a roboR does
Formally we define the set ddrmulaeby never enter a restricted ared by more thanl0 cm can

be expressed by

We will call the unit vector corresponding to the time
dimensiorg; and to spatial dimensioris, €y, . . ..

F.=F <€_;>F2|p(6‘1,...,9k)|ﬁF1 |F1 /\F2|3x: F
Oz J(RANA) < (10-4g,).
wherep is a predicate symbol like- oder<, x a rigid vari-
able ande; thei-th unit vector. The other boolean connec- The scenario is sketched in figure 1. The observ&tieod-
tives can be defined as the usual abbreviations. We onlyelling the robot is true for all points between the solid bpe
need to give the definition of “chop” here as the other oper- the observable is true for all points between the dashed
ators and the existential quantifier are defined as usual.  lines. For simplicity we omitted the second spatial dimen-

sion in the drawing.
I[F (€) F5](M, V) = true



Space

Time

Figure 2. Minimal distance scenario

Example 5 (Ensuring a minimal distance) Consider the

Corollary 1 There is no sound and complete proof system
for SC.

The proof is similar to the undecidablity result in [13]. It
is done by reduction from the emptiness problem for tiling
systems to the satisfiability problem f8€C.

For this proof we restrict ourselves to the set of formulae
given by

Fu=[n]|FAG|~F|F(&)G|F(&)G|ls =r

for some fixedr.
r=1.

Without loss of generality, we choose

3.1. Tiling Systems

We fix an alphabeXt and a special charactgt. A tile p
is a2 x 2 matrix with elements it U # and a tiling system
O is afinite set of tiles. The local languag€o) for a tiling
systemO is the set of alh x m matrices such that eahx 2

scenario of two moving robots using a collision avoidance pjock is in© and the boundaries of the matrix consist only
system as depicted in figure 2. We require that the minimal of .+ and+# does not occur in the interior.

distance is always greater thdmn. This is specified by
Oz, 0,

& [B1] A Cg, [Ra])
=

A—=Ra| A le, > 1) (€,

((©

(Ce, [Ra] (&) ([-Fa ) Oz, [Rz))

This formula reads as follows. For all spatio-temporal
subintervals such that Robd; and RobotR, are con-
tained somewhere in this interval we can split space into
three parts such that

e the lower part containg?;

¢ the middle part does neither contain Rolitt nor R,
and has length greater or equal

e and the upper part containg,.

Definition 1 (Validity / Satisfiability) A formula F is
called valid iff it holds for all interpretations, valuatits
and intervals. It is satisfiable iff there is an interpreatj@
valuation and an interval that makdshold.

3. Axiomatisability

In [8] it is shown that discrete time Duration Calculus is
decidable. But this does no longer hold for more than one
dimension.

Theorem 1 For two dimensions and abov&C is not re-
cursively enumerable, neither interpreted in the contumio
nor in the discrete domain.

Giammarresi and Restivo show in [6] that the emptiness
problem

Given a tiling systen®, is L(©) = @ ?

is undecidable. They provide a reduction such that a Tur-
ing MachineM has no successful computation fif©) is
empty. So the emptiness problem for tiling systems is not
recursively enumerable.

3.2. Encoding tilings in shape calculus

For a set of tile® = {p,, ..., pr} we define a formula
Fo in SC, such thatL.(©) # @ iff Fg is satisfiable. We
present an encoding which does not rely on continuous or
discrete time and space domain. Therefore we forbid chop-
ping at arbitrary positions by imposing a chess-board mark-
ing by a fresh observabi# to clearly identify2 x 2 blocks
in the continuous case. We define for everypil@ formula
F,, and then formalise ifg that eacl? x 2 block is a valid
tile. The grid is defined by

Fgmd = (([*1 Nlz, =1 N Lg, =1 (1) true) (€2) true)

A (true(er) (truedez) (([H] v [—k])
Az, =1 ALz, =1)))

A0z O ([RTA (e, > 1V Lg, > 1))

/\ﬁ<>el<> 2((ﬁ*~| A\ (fgl >1 \/fé‘2 > 1))
A=Og Cg, ([ (€1) ([~ Ale <1)(e1) [K])
A=Og Cg, ([ (€2) ([-K ] Ale, <1)(€2) [K])
A0z O, ([ (€1) ([ ] Ale, <1)(er) [-%])
A0z O, ([ (€2) ([H] Ale, <1)(e2) [—%])



* A F# # * A F# # * N\ #
# * Aa b *x Aa #
* A # c * Aa b * A #
# * Aa b * Aa #
* A F# # * A F# # * N\ #

Figure 3. Sample encoding of tilings in a grid
structure

which requires thask and—¥ alternate in distance start-
ing with . The first subformula requireslax 1 ¥-block

in the lower left corner, the second subformula specifies a

full 1 x 1 % or =% block in the upper right corner. The

other subformulae specify that each block is at least and at

most1 x 1. To describe & x 2 block in this grid satisfying

Py, ... Pyinits four cells we use the pattern

Faxa(Pr, P2, Pa, Pr) Z(([% A PL)) (&) ([~ A P2]) (@2)
([=% A Ps]) (€1) ([ A Py]))V
((T=% A Pr]) (€1) ([ ¥ A P2]) (€2)
([H A Ps]) (€1) ([ A Pal))

Now we can map every tilp; = ( (CL b ) to a formula

d
F,, i Fyx2(a, b, c,d). With these sub-formulae we define
Fg to be

df
F@ :quid

<k‘

A Og; Og (Faxo(true true true true) =

=1
A T#](e1) (T#](€2) [-#] (e2) [#]) (é1) [#]
AN

8,8’ €X,s#£s’

s = —s']

The second part describes, that edch2 block in the grid

variant of Interval Temporal LogidTL™ ). Our proof fol-

lows the lines of [7, 8] and considers only the 2-dimensional
case, but it can be easily generalised to more dimensions.
ITL™ does not use state assertions or the integral operator
and uses flexible variablaswhose values depend on the
interval, rigid variables: and/z, as terms.

6.ITL"

FOT 0T

= vl

Furthermore we define the abbreviatioH lz Lz, tO Mea-
sure the volume. For formulae it allows boolean combina-
tion, chop and quantification as 8C.
FITL LRI (@) FITL™ | (gL
l A

n n n
SEITL | R A RT3

6" |
. FITL”

Theorem 2 SC is then axiomatised relative {@L" by the
following axioms.

f0=0 (SC1)
J1=1¢ (SC2)
Jm>0 (SC3)
Jmi+ [mo = [(m V) + [(m Aa) (SC4)
Jr=a(g) [r=y= [r=z+y (SC5)
[TV (([7] V [~7] (€1) true) (€3) true) (FV1)
[TV (([7] V [~r] (€1) true) (—ea) true) (FV2)
[TV (([7]V [-7] (—€1) true) (é3) true) (FV3)
[TV (([7]V [-7] (—€1) true) (—é3) true) (FV4)

The axioms (FV1)-(FV4) specify finite variability, by de-
manding that for every point we can find 4 rectangles to the
lower left, lower right, upper left and upper right respec-
tively such that the value of a state expression is constant.

We introduce negated unit vectors and defihg-¢;) G el
G (€;) F to make the presentation more concise.
Proof. The proof of relative completeness proceeds as

must be in®, whereas the third part defines that the picture follows. For a validSC formula F* we construct théTL"
must be framed byt and# does not occur in the interior, as  formula F” by replacing the measurgr with a variable
sketched in figure 3. The last part ensures mutual exclusionv-]. We use the superscriptto indicate anTL™ formula

of symbols. With this definitiodFg is satisfiable if and only
if the local languagé€.(©) is not empty, so-Fyg is valid if
and only if the local languagk(©) is empty.

SoSC is not recursively enumerable and not axiomatis-
able. ]

3.3. Relative Axiomatisation

Duration Calculus itself only allows an axiomatisation
relative to interval temporal logic (ITL) [7]. Despite the
negative result of the previous section, it is still possitd
give an axiomatisation d8C relative to the n-dimensional

obtained from arSC formula by this replacement. The
needed instances of tI®C axioms are encoded by #RL™
formula HL such thatlz, Oz, HEL = F' is valid. We then
assume afiTL™ deductiontr» Oz Oz, HL = FI. This
deduction is arBC deduction-sc Oz Oz, Hr = F. As
Oz Oz, Hp is a conjunction ofSC axioms, we can easily
deducé-sc F' by modus ponens.

Let ' be an arbitrary vali&C formulaand letX, . . . X
be the set of boolean observables occurring'iandsS the
set of all state expressions build from these observables.
Only finitely many state expressions can be non equivalent.

Let [r] 4 {n’ | # <= =’ in propositional logi¢ denote



such an equivalence class afid = {[r]|r € S} the set of
equivalence classes. For every equivalence ¢fgdsse in-
troduce anTL" flexible variablev,; with the intuition that
i) models the duratiorf 7.

We encode th&C Axioms by the following finite sets
of ITL™ formulae.

Hy £ {vg = 0}
Hy L {oy =1}
Hs 2 {vm 2 0| 7] € 52}
Ha L {0pm) + Vpma) = Vpmrvma] + Vprana) | 1], 2] € S=}
Hs & {vpm) = 2 (&) v =y = v = w+y | [7] € 5=}
He L {1V (T TV [vom ] {da) true) (d2) true) |

(7] € Sz, d; € {&;,—&i}}

Where[v[ﬂ] ﬁ U[p] = A€ >0and |“| ﬁ {1 =0Vl =0.
We defineHj’D to be the conjunction of all formulae iH;
to He and F! to be thelTL" formula obtained fromF by
replacing every occurrence ¢fr by v(.

Definition 2 (H-Triple) Atriple (Z,V, [b1,e1] X [ba, e2]) IS
called a H-triple if

Z,V, [b1,e1] X [ba, e2] Eirin Oz Oa, HE,
i.e. for every subrectangle ¢ff;, e1] x [ba, e2] holds HE.

Lemmal Given an arbitrary H-triple (Z,V, [b1,e1] X
[b2, e2]) such thath; < e; and by < ey then for ev-
ery # € S there is a finite partition in sub-rectangles
(bl el] x [bd,ed],...[b7,e}] x [b%,en] such that for every
rectangle[bi, ei] x [b%, €3] holds either

7.V, [bivei] X [béaeé] |:|TL" ('U[Tr]" or
7.V, [biv 611] X [b127 eé] ':lTL" |—v[ﬁ7r]‘|

Proof. Let (z,y) € [b1,e1] X [be, e2]. Then byHs there
existsz; < z < z9 andy; <y < yo such that

,V, [z, 2] X [y, y] Emee [0 ]V [vm] and
IV, [x1, 7] X [y,y2] Fre [vja) ] V [v-r]  and
Z,V, [z, z2] X [y1,y] =i (v 1V [v--]  and
IV, [z, 22] X [y, y2] Erie (V)] V [vm ]

Now ]z, z2[x]y1, y2| IS an open interval coveringr, y)
and the closed intervdl, z2] X [y1,y2] has the desired
property. Then by Heine-Borels Theorem there is a finite
subset coveringp;, e1] x [be, ea] Of this infinite covering.
The cases whergr, y) is on the border are handled simi-
larly. This yields the finite partition as required. )

Using this result, for every H-tripl€Zir =, V, [b, €]), we
can construct a®C-interpretatioriZsc by defining for ev-
ery observablél Zsc(X) to be

1 ifthere arexy, zo,y1,y2
1 L <T2,y1 LY < Y2

df such that
ISC(X)((I, y)) - :Z-lTLn 3 V7 [(El, J]Q] X [y17 yQ]
):ITL" f”[xﬂ
0 otherwise

This interpretation has the required finite variability pro
erty, that each interval can be partitioned into finitely mman
subintervals such that the interpretation is constant ch ea
subinterval. One can show by induction on the structure
of state assertions that for this interpretatig and every
state assertion holds

Iscl [ 7]le, d] = L [vi][c, d]

Using this result, we can construct for evdiL™ inter-
pretationZr.» which violatesOz Oz, HL = F! anSC
interpretationZsc violating F'. This proves the following
lemma.

Lemma 2 Esc F impliesfr» Oz Oz, HE = F1L

To show the converse implication, [&¢c be anSC inter-
pretation violatingF'. Define the violatingTL"™ interpreta-
tion Zjr.» by

Tirin (v))([b1, €] X [b2, ea]) £ Tsc[f 7] (b1, e1] x [b, eal).

Using this interpretation and the soundness of axiomatisa-
tion, we obtain

Lemma 3 Eq» Oz Oz HE = FIimpliessc F.

To prove the relative completeness, supplesg F. Then

by lemma 2=~ Oz 0z HL = F!. Take thelTL"
derivation of =1 » Oz Oz, HL = F! and replace every
occurrence oby, by [ 7 to obtain anSC derivation. As
Hp is a conjunction of instances &C axioms, it can be
easily deduced i&C and therefore using modus ponens we
obtain a derivation of. O

4. Decidable Subsets

Decidable subsets play an import role as they make the
implementation of model-checkers possible. For the dis-
crete one-dimensional Duration Calculus there exists the
model-checker DCWLID [11]. In this section we present
two different types of decidable subsets. One is obtained by
imposing restrictions on the class of models and the other
by imposing restrictions on the class of formulae. As Dura-
tion Calculus is already undecidable in the continuous,case
henceforth we assume the time-space-domain to be discrete.



Space Space inductively construct a regular languag® (F') over the al-

I phabeiG™ representing all satisfying interpretations for
1% i°°§ 00 90 Clearly all functionsy}”; are language homomorphisms. At
S et 7 oz first we define what it means that one row of a matrix satis-
Too lEA22 o0 fies a state assertion.
l 00 00 00 . df
ot o1 o1 o1 hi((9is)) E Xg <= grg =1
00 ;ooi 00 00 00 m df m
I . Woo‘fioiojl‘ oo hk,k((.%}j)) For = hk,k((gi,j)) K
a N B B T ime b L — | ime df
) ) M) m AT <L W ((0:0) E
Figure 4. a) Two objects in finite space b) Their andh;’y ((gi5)) F m2

representation using a finite alphabet.

Using this terminology, the everywhere expressjaf is

4.1. Finite space, infinite time satisfied by all non-empty sequences of matrices such that
in every matrix in every rowr holds.

This first subseSCy;, imposes a restriction on the class

of allowed models. We allow one infinite temporal dimen- 1%} ifm=0

sion and require the other spatial dimensions to be finite. pm (77) il {(g:;) €G™ |

For simplicity we illustrate this for only one finite spatial ' .

and onepinfin%te temporal dimension. T)P/1e set of formpulae is VI <k <m:hi((9:5)) = T} otherwise

iven by the following EBNF: . . . .
g y g The constructions for conjunction, negation and temporal

Fu=[P]|FAG|-F|F(&)G|F(&)G chop are straightforward.
The approach is sketched in figure 4. As there are only L7(F A Fy) il L7(Fy) N L™(Fy)
finitely many observables, a configuration for a point in "
space-time can be represented by a bitvector. All spatial Lm(~Fy) = Lm(Fy)

dimensions are finite, so the spatial configuration for a mo-
ment in time can be represented by a matrix of bitvectors.
The size of the matrix is fixed by the size of space and so _ - - :
we use the set of these matrices as the finite alphabet. Thé‘ sequence Ofa xp malrix satisfies a formuls; () F iff
complete decision procedure is given in [13] which can even there is arr betvyegr[) andm such that the sequence of the
handle projection onto the temporal oder spatial axes. Forlowerr rows ;at|sf|e§71 qnd the sequence of the upper-
brevity we only sketch the construction here. We proceed” rows satisfies?. To this end_, we const;ucg‘rlhe language
by inductively constructing a regular languayéor a given  ©F &ll 7 x p sequences that satisfjf use(hy’.) ™ to create
formula F' such that the words id represent satisfying in- al p055|ble_z extensmns o x b matrices. This is done for
terpretations fof". Conjunction is constructed by intersec- F rgspectwely. The intersection of these languages has the
tion, negation by complementation, temporal chop by con- desired property.
catenation and spatial chop using inverse homomorphisms. o
So we obtain the following proposition. L™ (Fy (€) Fa) = U (R~ (LT (Fy))

re{0,...,m}

N (W)~ (L7 (F)))

d

=

L7 (Fy(€) Fp) = L™(Fy) o LT (Fy)

Theorem 3 SCy, is decidable.

Proof. Let{X,,...,X,} be the set of observables oc-
curing in F'. For discrete space of cardinality, the set

d . . . . e
g™ L {0,13m» of all m x p matrices is the set of Lemma 4 L(F) =@ <= Fisnotsatisfiable.
all possible spatial configurations for one moment in time, ) .
i.e. for a matrix(g;;) € G™ gi; = 1 iff the observ- Obviously L(F) is a regular language and theref@€x,

This definition yields

able X; is true at point. We define a family of functions is decidable. =
i G™ — G'~7+1 which return from a matrix the subma-
trix from row i up to row;j. Fori > j it will return the0 x p Expressivity Although this subset seems to be rather lim-

matrix. For a formulal’ and a spatial cardinality of,, we ited, there are several expressions of the original languag



which can be obtained as abbreviations using the restricted
set and the fact that the temporal and spatial domain are

discrete.
The termd, are reobtained as it is impossible in a dis- Ve,
crete domain to chop an interval of lengtfinto two parts (@ (b)
of positive length.
H = j|_1~| X2 X1 X1
_ PLIN =,
te =171 <L 1] A=(11] ) 1) X2

b =k+1 <L (0o, = k) (&) (ls, = 1)

le, >k <L (f;:k><é;»> 7 ©

Figure 5. (a) Dovetailing linear modal struc-
tures (b) World w and w’ may be different. (c)
Dovetailing SC

wherek € NT. The definition of the other operators>,<
is straightforward. As interpretations may only changérthe
value at discrete points the measyr# can be expressed

as follows:
df
= - subsetSCpait is the set of formula enerate the
JP=0 < [-P]V]] bsetSCpar is th f formulag®! g d by th
[P=1 RN [P =0(&) following EBNF:
(JP=0(e&)
([PI ALy =1A6 =1) (&) Flu=Fl (&) Fy | F{ AFy | ~F |[F? N b, =1
JP=0)(e) F? u= [P]| F{ (é2) F§ | Ff A F3 | -FY
P=0 .
, J Let §(F") denote the maximal such thatF’ can be gener-
P=k LN \/ ([P=k1) () ([P=ko))V ated fromF. Although the restrictiod™® A¢z, = 1 appears
k1,ka>0 to be severe, this construction can be used to describe inter
b tha=k vals of constant length by using chop. Note, that without
\/ ([P =k) () ([P =ks)) this restriction, it is already possible to encode the gilin
K1 ,k2>0 problem and the resulting subset is undecidable.
k1 +ko=k

The decision procedure constructs inductively regular

4.2. Non-alternating chop languages representing fulfilling interpretations.

o o _ _ d(F) = 2: In this caseF is a pure DC formula and we
Another possibility of deriving a decidable subset is to construct the language in the same way as for discrete DC.
use the fibrings and dovetailing ideas presented by Gabbay et Xo, ..., X, be the boolean observables occurringin
etal [4, 3]. This technique is used to combine two modal Then(z, ..., z.) € {0, 1}* represents a valuation of these

logics. To create a structure for the combined logic one usesphservables for an interval of unit length. Defifd(F)
a structure for the first one and associate to each world ajnductively by

structure for the second logic and so on. The idea is depicted

in figure 5 (a). Using this approach a lot of nice properties £2([x)) 4 {(zo,...,2.) | (zo,...,2.) =T},
like axiomatisability and decidability are inherited byeth of
combination. LX(FAG) = L2(F)NLYG),
We need to rule out models like these sketched in 5 (b) 9 df o 9
wherew andw’ do not coincide as our main goal is to rea- LAF(e2) G) = LA(F) 0 L(G),
son about objects iN"™. To this end, we do not allow chop- L3(—F) 47 L2(F).

alternation. On the outermost nesting level we only allow
formulae using(é;) nested by formulae usinggz) andso  §(F) = 1: In this case the subformulae of tygeplay

on. Additionally, we restrict the interaction of formulag b the role of the observables. LéF1,..., F,) be the fam-
adding a constraint on the length. ily of subformulae ofF" with §(F;) = 2. Then the vector
The idea is sketched for the two dimensional case but(fi,..., f,) € {0,1}¥ can describe whicformulaeare re-

can be extended to more dimensions. The language of thigquired to hold for an interval of length one.



At first we construct a regular languagé in the same
way as in the above case.

LA e =1L {(fr, o Sl fi = 1)
£'(F @) F) L L(F) o £(F3)
C(FAFH L LR 0 L(F)
/(- L (P

Different from the simple case, the languagfedoes not
represent the set of satisfying interpretations. For examp
the requirement thak; and F, hold for the same interval
may not be satisfiable. So we have to ensure that

e for each vecto(f1,..., f,) there is an interpretation
such that exactly those formul&& hold wheref; = 1
and

e there is a lengtlk such that for all vectors there is a
satisfying interpretation of this length.

LetX = {(f1,..., fy) | fi € {trugfalse} foralll <
i <y} the set of all vectors. For one vectdf, .. ., f,) we
define its associated language by

i€{1,...y}| fi=true

N

ie{l,..y}|fi=

L3((f1,... L3(F) N

C2(F).

false

This languages represents all interpretations that make ex
actly those formulae true which are indicated by the vector.

Definition 3 Let § be an arbitrary symbol and; : ¥ —
{#} be the homomorphism that simply replaces every letter

by .

Definition 4 A subsell C ¥ is calledconsistentff

he(L2((frs-o s fy) # @

.....

This definition ensures the two requirements stated
above. So we can define

L(F)
IIcx

II is consistent

Lrern

( ).

Using this definition one obtains

Lemma5 L(F) # @ iff F is satisfiable

and as all these constructions can be done effectively this

proves the following theorem.

Theorem 4 SCy: is decidable.

Example 6 These constructions are illustrated in 5 (c). In
order to decide

FEL (RPNt =1(8) Fy Als, =1 (&) Fy Az, = 1) A
(Fy Nz = 1(€1) F3 Nlz, =1(e1) F3 Nlz =1)

with

F1 (Xl] (€3) true,

Fg = true< ea) [ Xa],

Fs —true< 2) [X3].

The word(1,1,0)(1,0,1)(1,0,1) is in £'(F) and as the
alphabet is consistent also ii(F'). Therefore the models
for Fy, F», I3 can be combined to form a model Bt

Expressivity Like in SCs, operators can be reobtained in
SChait- At first we give definitions for formulae of typ2
which are to be used in the context ofi?z, = 1”. We use
the superscript here to stress this restriction.

true? <5 112 v -[172

2 =0 <L

2, =1 <5 (1712 A=(11)2 (&) [11%)
2 =k+1 <L (2 =k @) (2, =)

2, >k <5 (3 =k) (@) 1]

’p=0 <L [-pP2ve =

Pr=1 <L PP =0(e)

[PI2A2, =1(&) [*P=0

PP=k+1 <L *P=k(&) [*P=1

For formulae of typd the definitions are more complicated.
At first true can be defined in the standard way.
true <L ()AL, =1)V([1]Als =1)

As {z, is nearly a primitive inSCpay;, it can be defined as
follows:

bz =1 LN (trué) A bz, =1
le, =k +1 é(é =k)(e1) (lz, = 1)

The measurg P is zero iff there is no subinterval of length

1 on which the measure is not zero. Therefore this can be

defined using the typ%formulaf2 P =0.

daf

JP =0 < —(true(e)

(~(J?P = 0)) Ale, = 1) (1) true)



Using the same idea, we can defifi@ = 1.

P=1<L [P=0()
(J°P=1Ats =1)(&) [P=0

On an interval of lengthn the measurg’ P equalsk iff it
is equal tok; on the leftmost subinterval of length — 1,
is equal tok, on the rightmost subinterval of lengthand
k=ki+ ko.

. d,

JP=k &\
k1,k2€Ng
k1+ko=k

(fP = ki (€1)

(f2P = ky A lg, = 1))

5 Conclusion

In this paper we investigated properties of a multi-
dimensional extension of duration calculus. We show that
it is not axiomatisable and therefore not decidable. Nev-
ertheless we can give an axiomatisation relative to-a
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