
Axiomatisation and Decidability of Multi-Dimensional Dur ation Calculus

Andreas Schäfer
Department of Computing Science,

University of Oldenburg, 26111 Oldenburg, Germany
schaefer@informatik.uni-oldenburg.de

Abstract

We investigate properties of a spatio-temporal logic
based on ann-dimensional Duration Calculus tailored for
the specification and verification of mobile real-time sys-
tems. After showing non-axiomatisability, we give a com-
plete embedding inn-dimensional interval temporal logic
and present two different decidable subsets, which are im-
portant for tool support and practical use.

Keywords: Real-time systems, mobile systems, spatial
logic, temporal logic, Duration Calculus

1. Introduction

Real-time systems are used in many areas of our life and
their use even increases further, for example in embedded
systems for cars, train- and traffic controllers. There are
numerous well studied formal methods for describing and
reasoning about such systems, like Duration Calculus (DC)
[15] or timed automata [1]. But the behaviour of many real-
time systems exhibits mobile aspects. Railroad tracks are
divided into blocks and it is required that for every moment
in time each block is occupied by at most one train. Air-
planes are required to have a minimum distance during their
flight. Or for a mobile robot it might be important, that it
does not enter a certain area by more than 10 cm.

As Duration Calculus has already proven its benefi-
cial applicability in the area of real-time systems, ann-
dimensional extension, the shape calculus (SC), is proposed
to grasp this quantitative notion of space and mobility. In
this paper we investigate properties of this formalism like
axiomatisability and decidability. These points are cru-
cial as acceptance in practice often requires tool support by
model-checkers or theorem provers.

After giving a short introduction toSC in Section 2, we
show thatSC is not axiomatisable, but nevertheless it can
be completely axiomatised relative to then-dimensional ex-

tension of interval temporal logic. In Section 4 we present
two decidable subsets of discreteSC, one achieved by im-
posing restrictions on the class of models, one by restriction
on the class of formulae.

2. Shape Calculus

In this section we introduce the shape calculus proposed
in [13] in a simplified version.

In Duration Calculus [15] the behaviour of a system is
modelled by a set of time-dependent variables (observables)
whose values change in time. Here we adopt this approach
and use boolean observables that are space and time depen-
dent. We may choose to have discrete or continuous time
and space depending on the current application. A priori
we fix the number of spatial and temporal dimensions, say
n then the semantics of an observableX is given by a tra-
jectoryI

I[[X]] : R
n
≥0 → {0, 1}.

in the continuous case or a function with domainN
n in the

discrete case.

Example 1 To model a mobile robot moving on the floor,
we need two spatial and one temporal dimension, so we fix
n = 3. We employ two observablesR andA. The observ-
ableR is true for a point in space and time if and only if
the robot occupies this point in space at the given moment
in time. Similarly the restricted area is modeled by the ob-
servableA.

As we will measure time and space, we have to guaran-
tee that an integral exists. So we require a finite variability
property, that is every finiten-dimensional interval can be
partitioned in finitely many sub-intervals such thatI is con-
stant on each sub-interval.

The language ofSC is built from state expressions, terms
and formulae. A state expression characterises a property of
one point in time and space. They are denoted byπ and built
from boolean combinations of observables. The semantics

1

is a functionI[[π]] : R
n
≥0 → {0, 1} and is defined as a

straightforward extension of trajectories of observables.

I[[¬π]](~z)
df
= 1 − I[[π]](~z)

I[[π ∧ π′]](~z)
df
= I[[π]](~z) · I[[π′]](~z)

Example 2 The state expressionR ∧ ¬A describes exactly
the points in space-time where the robot is outside its re-
stricted area.

A term θ is either a measure
∫

π, a rigid variablex, the
special symbolℓ~ei

denoting the length in direction along
~ei or the application of a functionf . Usually we will use
functions like summation or multiplication.

θ ::=
∫

π |x | ℓ~ei
| f(θ1, . . . , θk)

As usual, the value of a rigid variable is determined by
a valuationV and the set of valuations is denoted byV al.
The semantics assigns a real number to eachn-dimensional
interval and thus it is a functionI[[θ]] : Intn×V al → R and
defined in the expected way, i.e. let

M = [b1, e1] × . . . [bi, ei] . . . × [bn, en] ∈ Intn

andV ∈ V al then

I[[
∫

π]](M,V)
df
=

∫

M

I[[π]]

I[[ℓ~ei
]](M,V)

df
= ei − bi

I[[x]](M,V)
df
= V(x)

I[[f(θ1, . . . , θk)]](M,V)
df
= fI(I[[θ1]](M,V)

. . .

I[[θk]](M,V))

Example 3 The term
∫

R∧¬A is the measure of all points
violating the requirement.

Formulae are interpreted over intervals and as usual for
interval logics, they incorporate a special “chop” operator to
partition the current interval into two parts. As we consider
a higher dimensional logic, we allow chops along each axis.
Formally we define the set offormulaeby

F ::= F1 〈~ei〉F2 | p(θ1, . . . , θk) | ¬F1 |F1 ∧ F2 | ∃x : F

wherep is a predicate symbol like= oder≤, x a rigid vari-
able and~ei the i-th unit vector. The other boolean connec-
tives can be defined as the usual abbreviations. We only
need to give the definition of “chop” here as the other oper-
ators and the existential quantifier are defined as usual.

I[[F1 〈~ei〉F2]](M,V) = true

���
���
���

���
���
���

∫

R ∧ ¬A

R
ob

ot
R

Area A

Space

Time

Figure 1. Moving robot scenario

iff M = [b1, e1]× . . .× [bi, ei]× . . .× [bn, en] and there is
am ∈ [bi, ei] such that

I[[F1]]([b1, e1] × . . . [bi, m] . . . × [bn, en],V) = true and

I[[F2]]([b1, e1] × . . . [m, ei] . . . × [bn, en],V) = true.

We define some abbreviations to ease the handling. The
everywhere operator⌈π⌉ expresses that a state assertionπ

holds almost everywhere in the interval and the empty in-
terval is denoted by⌈⌉. Then-dimensional volume is mea-
sured by the termℓ.

ℓ
df
=

∫

1 ⌈π⌉
df
=

∫

π = ℓ ∧ ℓ > 0 ⌈⌉
df
=

∫

1 = 0

The somewhere operator3~ei
F chops then-dimensional in-

terval twice in the same direction such that in the middle
intervalF holds.

3~ei
F

df
= true〈~ei〉F 〈~ei〉 true

The dual globally operator is2~ei
defined by

2~ei

df
= ¬3~ei

¬F.

We will call the unit vector corresponding to the time
dimension~et and to spatial dimensions~ex, ~ey,

Example 4 The initial requirement, that a robotR does
never enter a restricted areaA by more than10 cm can
be expressed by

2~et

∫

(R ∧ A) ≤ (10 · ℓ~et
).

The scenario is sketched in figure 1. The observableR mod-
elling the robot is true for all points between the solid lines,
the observableA is true for all points between the dashed
lines. For simplicity we omitted the second spatial dimen-
sion in the drawing.

��������
��������
��������
��������

R
obot

R
2

R
ob

ot
R 1

3~ex
⌈R2⌉

⌈¬R1 ∧ ¬R2⌉ ∧ ℓ~ex
≥ 1

3~ex
⌈R1⌉

Space

Time

Figure 2. Minimal distance scenario

Example 5 (Ensuring a minimal distance) Consider the
scenario of two moving robots using a collision avoidance
system as depicted in figure 2. We require that the minimal
distance is always greater than1m. This is specified by

2~et
2~ex

(

(3~ex
⌈R1⌉ ∧ 3~ex

⌈R2⌉)

⇒

(3~ex
⌈R1⌉ 〈~ex〉 (⌈¬R1 ∧ ¬R2⌉ ∧ ℓ~ex

≥ 1) 〈~ex〉3~ex
⌈R2⌉)

)

This formula reads as follows. For all spatio-temporal
subintervals such that RobotR1 and RobotR2 are con-
tained somewhere in this interval we can split space into
three parts such that

• the lower part containsR1

• the middle part does neither contain RobotR1 nor R2

and has length greater or equal1

• and the upper part containsR2.

Definition 1 (Validity / Satisfiability) A formula F is
called valid iff it holds for all interpretations, valuations
and intervals. It is satisfiable iff there is an interpreation, a
valuation and an interval that makesF hold.

3. Axiomatisability

In [8] it is shown that discrete time Duration Calculus is
decidable. But this does no longer hold for more than one
dimension.

Theorem 1 For two dimensions and aboveSC is not re-
cursively enumerable, neither interpreted in the continuous
nor in the discrete domain.

Corollary 1 There is no sound and complete proof system
for SC.

The proof is similar to the undecidablity result in [13]. It
is done by reduction from the emptiness problem for tiling
systems to the satisfiability problem forSC.

For this proof we restrict ourselves to the set of formulae
given by

F ::= ⌈π⌉ | F ∧ G | ¬F | F 〈~e1〉G | F 〈~e2〉G | ℓ~ei
= r

for some fixedr. Without loss of generality, we choose
r = 1.

3.1. Tiling Systems

We fix an alphabetΣ and a special character#. A tile p

is a2×2 matrix with elements inΣ∪# and a tiling system
Θ is a finite set of tiles. The local languageL(Θ) for a tiling
systemΘ is the set of alln×m matrices such that each2×2
block is inΘ and the boundaries of the matrix consist only
of # and# does not occur in the interior.

Giammarresi and Restivo show in [6] that the emptiness
problem

Given a tiling systemΘ, is L(Θ) = ∅ ?

is undecidable. They provide a reduction such that a Tur-
ing MachineM has no successful computation iffL(Θ) is
empty. So the emptiness problem for tiling systems is not
recursively enumerable.

3.2. Encoding tilings in shape calculus

For a set of tilesΘ = {p1, . . . , pk} we define a formula
FΘ in SC, such thatL(Θ) 6= ∅ iff FΘ is satisfiable. We
present an encoding which does not rely on continuous or
discrete time and space domain. Therefore we forbid chop-
ping at arbitrary positions by imposing a chess-board mark-
ing by a fresh observable⋆ to clearly identify2× 2 blocks
in the continuous case. We define for every tilepi a formula
Fpi

and then formalise inFΘ that each2×2 block is a valid
tile. The grid is defined by

Fgrid
df
= ((⌈⋆⌉ ∧ ℓ~e1

= 1 ∧ ℓ~e2
= 1 〈~e1〉 true) 〈~e2〉 true)

∧ (true〈~e1〉 (true〈~e2〉 ((⌈⋆⌉ ∨ ⌈¬⋆⌉)

∧ ℓ~e1
= 1 ∧ ℓ~e2

= 1)))

∧¬3~e1
3~e2

(⌈⋆⌉ ∧ (ℓ~e1
> 1 ∨ ℓ~e2

> 1))

∧¬3~e1
3~e2

(⌈¬⋆⌉ ∧ (ℓ~e1
> 1 ∨ ℓ~e2

> 1))

∧¬3~e1
3~e2

(⌈⋆⌉ 〈~e1〉 (⌈¬⋆⌉ ∧ ℓ~e1
< 1) 〈~e1〉 ⌈⋆⌉)

∧¬3~e1
3~e2

(⌈⋆⌉ 〈~e2〉 (⌈¬⋆⌉ ∧ ℓ~e2
< 1) 〈~e2〉 ⌈⋆⌉)

∧¬3~e1
3~e2

(⌈¬⋆⌉ 〈~e1〉 (⌈⋆⌉ ∧ ℓ~e1
< 1) 〈~e1〉 ⌈¬⋆⌉)

∧¬3~e1
3~e2

(⌈¬⋆⌉ 〈~e2〉 (⌈⋆⌉ ∧ ℓ~e2
< 1) 〈~e2〉 ⌈¬⋆⌉)

⋆ ∧ # # ⋆ ∧ # # ⋆ ∧ #
⋆ ∧ a b ⋆ ∧ a

⋆ ∧ # c ⋆ ∧ a b ⋆ ∧ #
⋆ ∧ a b ⋆ ∧ a

⋆ ∧ # # ⋆ ∧ # # ⋆ ∧ #

Figure 3. Sample encoding of tilings in a grid
structure

which requires that⋆ and¬⋆ alternate in distance1 start-
ing with ⋆. The first subformula requires a1 × 1 ⋆-block
in the lower left corner, the second subformula specifies a
full 1 × 1 ⋆ or ¬⋆ block in the upper right corner. The
other subformulae specify that each block is at least and at
most1× 1. To describe a2× 2 block in this grid satisfying
P1, . . . P4 in its four cells we use the pattern

F2×2(P1, P2, P3, P4)
df
=((⌈⋆ ∧ P1⌉) 〈~e1〉 (⌈¬⋆ ∧ P2⌉) 〈~e2〉

(⌈¬⋆ ∧ P3⌉) 〈~e1〉 (⌈⋆ ∧ P4⌉))∨

((⌈¬⋆ ∧ P1⌉) 〈~e1〉 (⌈⋆ ∧ P2⌉) 〈~e2〉

(⌈⋆ ∧ P3⌉) 〈~e1〉 (⌈¬⋆ ∧ P4⌉))

Now we can map every tilepi =

(

a b

c d

)

to a formula

Fpi

df
= F2×2(a, b, c, d). With these sub-formulae we define

FΘ to be

FΘ
df
=Fgrid

∧ 2~e1
2~e2

(F2×2(true, true, true, true) ⇒
k

∨

i=1

Fpi
)

∧ ⌈#⌉ 〈~e1〉 (⌈#⌉ 〈~e2〉 ⌈¬#⌉ 〈~e2〉 ⌈#⌉) 〈~e1〉 ⌈#⌉

∧ ⌈
∧

s,s′∈Σ,s6=s′

s ⇒ ¬s′⌉

The second part describes, that each2 × 2 block in the grid
must be inΘ, whereas the third part defines that the picture
must be framed by# and# does not occur in the interior, as
sketched in figure 3. The last part ensures mutual exclusion
of symbols. With this definitionFΘ is satisfiable if and only
if the local languageL(Θ) is not empty, so¬FΘ is valid if
and only if the local languageL(Θ) is empty.

SoSC is not recursively enumerable and not axiomatis-
able. 2

3.3. Relative Axiomatisation

Duration Calculus itself only allows an axiomatisation
relative to interval temporal logic (ITL) [7]. Despite the
negative result of the previous section, it is still possible to
give an axiomatisation ofSC relative to the n-dimensional

variant of Interval Temporal Logic (ITLn). Our proof fol-
lows the lines of [7, 8] and considers only the 2-dimensional
case, but it can be easily generalised to more dimensions.
ITLn does not use state assertions or the integral operator
and uses flexible variablesv whose values depend on the
interval, rigid variablesx andℓ~ei

as terms.

θITLn

::= x | v | ℓ~ei
| f(θITLn

1 , . . . , θITLn

k)

Furthermore we define the abbreviationℓ
df
= ℓ~e1

·ℓ~e2
to mea-

sure the volume. For formulae it allows boolean combina-
tion, chop and quantification as inSC.

F ITLn

::=F ITLn

1 〈~ei〉F ITLn

2 | p(θITLn

1 , . . . , θITLn

k) |

¬F ITLn

1 | F ITLn

1 ∧ F ITLn

2 | ∃x : F ITLn

Theorem 2 SC is then axiomatised relative toITLn by the
following axioms.

∫

0 = 0 (SC1)
∫

1 = ℓ (SC2)
∫

π ≥ 0 (SC3)
∫

π1 +
∫

π2 =
∫

(π1 ∨ π2) +
∫

(π1 ∧ π2) (SC4)
∫

π = x 〈~ei〉
∫

π = y ⇒
∫

π = x + y (SC5)

⌈⌉ ∨ ((⌈π⌉ ∨ ⌈¬π⌉ 〈~e1〉 true) 〈~e2〉 true) (FV1)

⌈⌉ ∨ ((⌈π⌉ ∨ ⌈¬π⌉ 〈~e1〉 true) 〈−~e2〉 true) (FV2)

⌈⌉ ∨ ((⌈π⌉ ∨ ⌈¬π⌉ 〈−~e1〉 true) 〈~e2〉 true) (FV3)

⌈⌉ ∨ ((⌈π⌉ ∨ ⌈¬π⌉ 〈−~e1〉 true) 〈−~e2〉 true) (FV4)

The axioms (FV1)-(FV4) specify finite variability, by de-
manding that for every point we can find 4 rectangles to the
lower left, lower right, upper left and upper right respec-
tively such that the value of a state expression is constant.

We introduce negated unit vectors and defineF 〈−~ei〉G
df
=

G 〈~ei〉F to make the presentation more concise.
Proof. The proof of relative completeness proceeds as

follows. For a validSC formulaF we construct theITLn

formula F I by replacing the measure
∫

π with a variable
v[π]. We use the superscriptI to indicate anITLn formula
obtained from anSC formula by this replacement. The
needed instances of theSC axioms are encoded by anITLn

formulaHI
F such that2~e1

2~e2
HI

F ⇒ F I is valid. We then
assume anITLn deduction⊢ITLn 2~e1

2~e2
HI

F ⇒ F I . This
deduction is anSC deduction⊢SC 2~e1

2~e2
HF ⇒ F . As

2~e1
2~e2

HF is a conjunction ofSC axioms, we can easily
deduce⊢SC F by modus ponens.

LetF be an arbitrary validSC formula and letX1, . . .Xl

be the set of boolean observables occurring inF andS the
set of all state expressions build from these observables.
Only finitely many state expressions can be non equivalent.

Let [π]
df
= {π′ | π ⇐⇒ π′ in propositional logic} denote

such an equivalence class andS≡ = {[π]|π ∈ S} the set of
equivalence classes. For every equivalence class[π] we in-
troduce anITLn flexible variablev[π] with the intuition that
v[π] models the duration

∫

π.
We encode theSC Axioms by the following finite sets

of ITLn formulae.

H1
df
= {v[0] = 0}

H2
df
= {v[1] = ℓ}

H3
df
= {v[π] ≥ 0 | [π] ∈ S≡}

H4
df
= {v[π1] + v[π2] = v[π1∨π2] + v[π1∧π2] | [π1], [π2] ∈ S≡}

H5
df
= {v[π] = x 〈~ei〉 v[π] = y ⇒ v[π] = x + y | [π] ∈ S≡}

H6
df
= {⌈⌉ ∨ ((⌈v[π]⌉ ∨ ⌈v[¬π]⌉ 〈 ~d1〉 true) 〈 ~d2〉 true) |

[π] ∈ S≡, di ∈ {~ei,−~ei}}

where⌈v[π]⌉
df
= v[π] = ℓ∧ ℓ > 0 and⌈⌉

df
= ℓ1 = 0∨ ℓ2 = 0.

We defineHI
F to be the conjunction of all formulae inH1

to H6 andF I to be theITLn formula obtained fromF by
replacing every occurrence of

∫

π by v[π].

Definition 2 (H-Triple) A triple (I,V , [b1, e1]× [b2, e2]) is
called a H-triple if

I,V , [b1, e1] × [b2, e2] |=ITLn 2~e1
2~e2

HI
F

i.e. for every subrectangle of[b1, e1] × [b2, e2] holdsHI
F .

Lemma 1 Given an arbitrary H-triple (I,V , [b1, e1] ×
[b2, e2]) such thatb1 < e1 and b2 < e2 then for ev-
ery π ∈ S there is a finite partition in sub-rectangles
[b1

1, e
1
1] × [b1

2, e
1
2], . . . [b

n
1 , en

1] × [bn
2 , en

2] such that for every
rectangle[bi

1, e
i
1] × [bi

2, e
i
2] holds either

I,V , [bi
1, e

i
1] × [bi

2, e
i
2] |=ITLn ⌈v[π]⌉ or

I,V , [bi
1, e

i
1] × [bi

2, e
i
2] |=ITLn ⌈v[¬π]⌉

Proof. Let (x, y) ∈ [b1, e1] × [b2, e2]. Then byH6 there
existsx1 ≤ x ≤ x2 andy1 ≤ y ≤ y2 such that

I,V , [x1, x] × [y1, y] |=ITLn ⌈v[π]⌉ ∨ ⌈v[¬π]⌉ and

I,V , [x1, x] × [y, y2] |=ITLn ⌈v[π]⌉ ∨ ⌈v[¬π]⌉ and

I,V , [x, x2] × [y1, y] |=ITLn ⌈v[π]⌉ ∨ ⌈v[¬π]⌉ and

I,V , [x, x2] × [y, y2] |=ITLn ⌈v[π]⌉ ∨ ⌈v[¬π]⌉

Now]x1, x2[×]y1, y2[is an open interval covering(x, y)
and the closed interval[x1, x2] × [y1, y2] has the desired
property. Then by Heine-Borels Theorem there is a finite
subset covering[b1, e1] × [b2, e2] of this infinite covering.
The cases where(x, y) is on the border are handled simi-
larly. This yields the finite partition as required. 2

Using this result, for every H-triple(IITLn ,V , [b, e]), we
can construct anSC-interpretationISC by defining for ev-
ery observableX ISC(X) to be

ISC(X)((x, y))
df
=































1 if there arex1, x2, y1, y2

x1 ≤ x < x2, y1 ≤ y < y2

such that
IITLn ,V , [x1, x2] × [y1, y2]

|=ITLn ⌈v[X]⌉
0 otherwise

This interpretation has the required finite variability prop-
erty, that each interval can be partitioned into finitely many
subintervals such that the interpretation is constant on each
subinterval. One can show by induction on the structure
of state assertions that for this interpretationISC and every
state assertionπ holds

ISC[[
∫

π]][c, d] = IITLn [[v[π]]][c, d]

Using this result, we can construct for everyITLn inter-
pretationIITLn which violates2~e1

2~e2
HI

F ⇒ F I an SC
interpretationISC violating F . This proves the following
lemma.

Lemma 2 |=SC F implies|=ITLn 2~e1
2~e2

HI
F ⇒ F I .

To show the converse implication, letISC be anSC inter-
pretation violatingF . Define the violatingITLn interpreta-
tion IITLn by

IITLn(v[π])([b1, e1] × [b2, e2])
df
= ISC[[

∫

π]]([b1, e1] × [b2, e2]).

Using this interpretation and the soundness of axiomatisa-
tion, we obtain

Lemma 3 |=ITLn 2~e1
2~e2

HI
F ⇒ F I implies|=SC F .

To prove the relative completeness, suppose|=SC F . Then
by lemma 2|=ITLn 2~e1

2~e2
HI

F ⇒ F I . Take theITLn

derivation of|=ITLn 2~e1
2~e2

HI
F ⇒ F I and replace every

occurrence ofv[π] by
∫

π to obtain anSC derivation. As
HF is a conjunction of instances ofSC axioms, it can be
easily deduced inSC and therefore using modus ponens we
obtain a derivation ofF . 2

4. Decidable Subsets

Decidable subsets play an import role as they make the
implementation of model-checkers possible. For the dis-
crete one-dimensional Duration Calculus there exists the
model-checker DCVALID [11]. In this section we present
two different types of decidable subsets. One is obtained by
imposing restrictions on the class of models and the other
by imposing restrictions on the class of formulae. As Dura-
tion Calculus is already undecidable in the continuous case,
henceforth we assume the time-space-domain to be discrete.

a)

�������
�������
�������
�������

�������
�������
�������
�������

��
��
��
��

��
��
��
��

Space

Time
b)

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Space

Time
00

00

00

00

00

00 00

00

00

01

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

01

00

00

11

10 10

10 10

10 10

10 10

10

01 01

one letter

Figure 4. a) Two objects in finite space b) Their
representation using a finite alphabet.

4.1. Finite space, infinite time

This first subsetSCfin imposes a restriction on the class
of allowed models. We allow one infinite temporal dimen-
sion and require the other spatial dimensions to be finite.
For simplicity we illustrate this for only one finite spatial
and one infinite temporal dimension. The set of formulae is
given by the following EBNF:

F ::= ⌈P ⌉ |F ∧ G | ¬F |F 〈~ex〉G |F 〈~et〉G

The approach is sketched in figure 4. As there are only
finitely many observables, a configuration for a point in
space-time can be represented by a bitvector. All spatial
dimensions are finite, so the spatial configuration for a mo-
ment in time can be represented by a matrix of bitvectors.
The size of the matrix is fixed by the size of space and so
we use the set of these matrices as the finite alphabet. The
complete decision procedure is given in [13] which can even
handle projection onto the temporal oder spatial axes. For
brevity we only sketch the construction here. We proceed
by inductively constructing a regular languageL for a given
formulaF such that the words inL represent satisfying in-
terpretations forF . Conjunction is constructed by intersec-
tion, negation by complementation, temporal chop by con-
catenation and spatial chop using inverse homomorphisms.
So we obtain the following proposition.

Theorem 3 SCfin is decidable.

Proof. Let {X1, . . . , Xp} be the set of observables oc-
curing in F . For discrete space of cardinalitym, the set

Gm df
= {0, 1}m×p of all m × p matrices is the set of

all possible spatial configurations for one moment in time,
i.e. for a matrix(gi,j) ∈ Gm gi,j = 1 iff the observ-
ableXj is true at pointi. We define a family of functions
hm

i,j : Gm → Gi−j+1 which return from a matrix the subma-
trix from row i up to rowj. Fori > j it will return the0×p

matrix. For a formulaF and a spatial cardinality ofm, we

inductively construct a regular languageLm(F) over the al-
phabetGm representing all satisfying interpretations forF .
Clearly all functionshm

i,j are language homomorphisms. At
first we define what it means that one row of a matrix satis-
fies a state assertion.

hm
k,k((gi,j)) |= Xq

df
⇐⇒ gk,q = 1

hm
k,k((gi,j)) |= ¬π

df
⇐⇒ hm

k,k((gi,j)) 6|= π

hm
k,k((gi,j)) |= π1 ∧ π2

df
⇐⇒ hm

k,k((gi,j)) |= π1

andhm
k,k((gi,j)) |= π2

Using this terminology, the everywhere expression⌈π⌉ is
satisfied by all non-empty sequences of matrices such that
in every matrix in every rowπ holds.

Lm(⌈π⌉)
df
=











∅ if m = 0

{(gi,j) ∈ Gm |

∀1 ≤ k ≤ m : hm
k,k((gi,j)) |= π}+ otherwise

The constructions for conjunction, negation and temporal
chop are straightforward.

Lm(F1 ∧ F2)
df
= Lm(F1) ∩ Lm(F2)

Lm(¬F1)
df
= Lm(F1)

Lm(F1 〈~et〉F2)
df
= Lm(F1) ◦ L

m(F2)

A sequence ofm×p matrix satisfies a formulaF1 〈~ex〉F2 iff
there is anr between0 andm such that the sequence of the
lowerr rows satisfiesF1 and the sequence of the upperm−
r rows satisfiesF2. To this end, we construct the language
of all r × p sequences that satisfyF1 use(hm

1,r)
−1 to create

all possible extensions tom × p matrices. This is done for
F2 respectively. The intersection of these languages has the
desired property.

Lm(F1 〈~ex〉F2)
df
=

⋃

r∈{0,...,m}

(

(hm
1,r)

−1(Lr(F1))

∩ (hm
r+1,m)−1(Lm−r(F2))

)

This definition yields

Lemma 4 L(F) = ∅ ⇐⇒ F is not satisfiable.

ObviouslyL(F) is a regular language and thereforeSCfin

is decidable. 2

Expressivity Although this subset seems to be rather lim-
ited, there are several expressions of the original language

which can be obtained as abbreviations using the restricted
set and the fact that the temporal and spatial domain are
discrete.

The termsℓ~ei
are reobtained as it is impossible in a dis-

crete domain to chop an interval of length1 into two parts
of positive length.

⌈⌉
df

⇐⇒ ¬⌈1⌉

ℓ~ei
= 1 ∧ ¬⌈⌉

df
⇐⇒ ⌈1⌉ ∧ ¬(⌈1⌉ 〈~ei〉 ⌈1⌉)

ℓ~ei
= k + 1

df
⇐⇒ (ℓ~ei

= k) 〈~ei〉 (ℓ~ei
= 1)

ℓ~ei
> k

df
⇐⇒ (ℓ~ei

= k) 〈~ei〉 ⌈1⌉;

wherek ∈ N
+. The definition of the other operators≤,≥,<

is straightforward. As interpretations may only change their
value at discrete points the measure

∫

P can be expressed
as follows:

∫

P = 0
df

⇐⇒ ⌈¬P ⌉ ∨ ⌈⌉
∫

P = 1
df

⇐⇒
∫

P = 0 〈~ex〉

(
∫

P = 0 〈~et〉

(⌈P ⌉ ∧ ℓx = 1 ∧ ℓt = 1) 〈~et〉
∫

P = 0) 〈~ex〉
∫

P = 0
∫

P = k
df

⇐⇒
∨

k1,k2>0
k1+k2=k

((
∫

P = k1) 〈~ex〉 (
∫

P = k2)) ∨

∨

k1,k2>0
k1+k2=k

((
∫

P = k1) 〈~et〉 (
∫

P = k2))

4.2. Non-alternating chop

Another possibility of deriving a decidable subset is to
use the fibrings and dovetailing ideas presented by Gabbay
et al [4, 3]. This technique is used to combine two modal
logics. To create a structure for the combined logic one uses
a structure for the first one and associate to each world a
structure for the second logic and so on. The idea is depicted
in figure 5 (a). Using this approach a lot of nice properties
like axiomatisability and decidability are inherited by the
combination.

We need to rule out models like these sketched in 5 (b)
wherew andw′ do not coincide as our main goal is to rea-
son about objects inNn. To this end, we do not allow chop-
alternation. On the outermost nesting level we only allow
formulae using〈~e1〉 nested by formulae using〈~e2〉 and so
on. Additionally, we restrict the interaction of formulae by
adding a constraint on the length.

The idea is sketched for the two dimensional case but
can be extended to more dimensions. The language of this

(a) (b)

w w’

(c)

X0 X0X0

X2 X1 X1

f1

f2

f1 f1

f3f3

Figure 5. (a) Dovetailing linear modal struc-
tures (b) World w and w′ may be different. (c)
Dovetailing SC

subsetSCnAlt is the set of formulaeF 1 generated by the
following EBNF:

F 1 ::= F 1
1 〈~e1〉F 1

2 |F 1
1 ∧ F 1

2 | ¬F 1
1 |F 2 ∧ ℓ~e1

= 1

F 2 ::= ⌈P ⌉ |F 2
1 〈~e2〉F 2

2 |F 2
1 ∧ F 2

2 | ¬F 2
1

Let δ(F) denote the maximali such thatF can be gener-
ated fromF i. Although the restrictionF 2∧ℓ~e1

= 1 appears
to be severe, this construction can be used to describe inter-
vals of constant length by using chop. Note, that without
this restriction, it is already possible to encode the tiling
problem and the resulting subset is undecidable.

The decision procedure constructs inductively regular
languages representing fulfilling interpretations.

δ(F) = 2: In this caseF is a pure DC formula and we
construct the language in the same way as for discrete DC.
Let X0, . . . , Xz be the boolean observables occurring inF .
Then(x0, . . . , xz) ∈ {0, 1}z represents a valuation of these
observables for an interval of unit length. DefineL2(F)
inductively by

L2(⌈π⌉)
df
= {(x0, . . . , xz) | (x0, . . . , xz) |= π}+,

L2(F ∧ G)
df
= L2(F) ∩ L2(G),

L2(F 〈~e2〉G)
df
= L2(F) ◦ L2(G),

L2(¬F)
df
= L2(F).

δ(F) = 1: In this case the subformulae of type2 play
the role of the observables. Let(F1, . . . , Fy) be the fam-
ily of subformulae ofF with δ(Fi) = 2. Then the vector
(f1, . . . , fy) ∈ {0, 1}y can describe whichformulaeare re-
quired to hold for an interval of length one.

At first we construct a regular languageL′ in the same
way as in the above case.

L′(F 2
i ∧ ℓ~e2

= 1)
df
= {(f1, . . . , fy)|fi = 1}

L′(F 1
1 〈~e1〉F 1

2)
df
= L(F 1

1) ◦ L(F 1
2)

L′(F 1
1 ∧ F 1

2)
df
= L(F 1

1) ∩ L(F 1
2)

L′(¬F 1)
df
= L(F 1)

Different from the simple case, the languageL′ does not
represent the set of satisfying interpretations. For example
the requirement thatF1 andF2 hold for the same interval
may not be satisfiable. So we have to ensure that

• for each vector(f1, . . . , fy) there is an interpretation
such that exactly those formulaeFi hold wherefi = 1
and

• there is a lengthk such that for all vectors there is a
satisfying interpretation of this length.

Let Σ = {(f1, . . . , fy) | fi ∈ {true, false} for all 1 ≤
i ≤ y} the set of all vectors. For one vector(f1, . . . , fy) we
define its associated language by

L2((f1, . . . , fy))
df
=

⋂

i∈{1,...y}|fi=true

L2(Fi) ∩

⋂

i∈{1,...y}|fi=false

L2(Fi).

This languages represents all interpretations that make ex-
actly those formulae true which are indicated by the vector.

Definition 3 Let ♯ be an arbitrary symbol andh♯ : Σ →
{♯} be the homomorphism that simply replaces every letter
by ♯.

Definition 4 A subsetΠ ⊆ Σ is calledconsistentiff
⋂

(f1,...,fy)∈Π

h♯(L
2((f1, . . . , fy))) 6= ∅

This definition ensures the two requirements stated
above. So we can define

L(F)
df
= L′(F) ∩ (

⋃

Π⊆Σ
Π is consistent

Π∗).

Using this definition one obtains

Lemma 5 L(F) 6= ∅ iff F is satisfiable

and as all these constructions can be done effectively this
proves the following theorem.

Theorem 4 SCnAlt is decidable.

Example 6 These constructions are illustrated in 5 (c). In
order to decide

F
df
= (F1 ∧ ℓ~e1

= 1 〈~e1〉F1 ∧ ℓ~e1
= 1 〈~e1〉F1 ∧ ℓ~e1

= 1) ∧

(F2 ∧ ℓ~e1
= 1 〈~e1〉F3 ∧ ℓ~e1

= 1 〈~e1〉F3 ∧ ℓ~e1
= 1)

with

F1
df
= ⌈X1⌉ 〈~e2〉 true,

F2
df
= true〈~e2〉 ⌈X2⌉,

F3
df
= true〈~e2〉 ⌈X3⌉.

The word(1, 1, 0)(1, 0, 1)(1, 0, 1) is in L′(F) and as the
alphabet is consistent also inL(F). Therefore the models
for F1, F2, F3 can be combined to form a model forF .

Expressivity Like in SCfin operators can be reobtained in
SCnAlt. At first we give definitions for formulae of type2
which are to be used in the context of “∧ ℓ~e1

= 1”. We use
the superscript2 here to stress this restriction.

true2
df

⇐⇒ ⌈1⌉2 ∨ ¬⌈1⌉2

ℓ2
~e2

= 0
df

⇐⇒ ¬⌈1⌉2

ℓ2
~e2

= 1
df

⇐⇒ ⌈1⌉2 ∧ ¬(⌈1⌉2 〈~e2〉 ⌈1⌉
2)

ℓ2
~e2

= k + 1
df

⇐⇒ (ℓ2
~e2

= k) 〈~e2〉 (ℓ2
~e2

= 1)

ℓ2
~e2

> k
df

⇐⇒ (ℓ2
2 = k) 〈~e2〉 ⌈1⌉

2

∫ 2
P = 0

df
⇐⇒ ⌈¬P ⌉2 ∨ ℓ2

~e2
= 0

∫ 2
P = 1

df
⇐⇒

∫ 2
P = 0 〈~e2〉

⌈P ⌉2 ∧ ℓ2
~e2

= 1 〈~e2〉
∫ 2

P = 0
∫ 2

P = k + 1
df

⇐⇒
∫ 2

P = k 〈~e2〉
∫ 2

P = 1

For formulae of type1 the definitions are more complicated.
At first true can be defined in the standard way.

true
df

⇐⇒ (⌈1⌉ ∧ ℓ~e1
= 1) ∨ ¬(⌈1⌉ ∧ ℓ~e1

= 1)

As ℓ~e1
is nearly a primitive inSCnAlt, it can be defined as

follows:

ℓ~e1
= 1

df
⇐⇒ (true2) ∧ ℓ~e1

= 1

ℓ~e1
= k + 1

df
⇐⇒ (ℓ~e1

= k) 〈~e1〉 (ℓ~e1
= 1)

The measure
∫

P is zero iff there is no subinterval of length
1 on which the measure is not zero. Therefore this can be
defined using the type2 formula

∫ 2
P = 0.

∫

P = 0
df

⇐⇒ ¬
(

true〈~e1〉

((¬(
∫ 2

P = 0)) ∧ ℓ~e1
= 1) 〈~e1〉 true

)

Using the same idea, we can define
∫

P = 1.

∫

P = 1
df

⇐⇒
∫

P = 0 〈~e1〉

(
∫ 2

P = 1 ∧ ℓ~e1
= 1) 〈~e1〉

∫

P = 0

On an interval of lengthm the measure
∫

P equalsk iff it
is equal tok1 on the leftmost subinterval of lengthm − 1,
is equal tok2 on the rightmost subinterval of length1 and
k = k1 + k2.

∫

P = k
df

⇐⇒
∨

k1,k2∈N0

k1+k2=k

(

∫

P = k1 〈~e1〉

(
∫ 2

P = k2 ∧ ℓ~e1
= 1)

)

5 Conclusion

In this paper we investigated properties of a multi-
dimensional extension of duration calculus. We show that
it is not axiomatisable and therefore not decidable. Nev-
ertheless we can give an axiomatisation relative to an-
dimensional interval temporal logic. Tool-support is cru-
cial when thinking of applications of such a formalism in
practice. So decidable subsets play an important role. We
present two different ones. One is retrieved by restricting
the models the other by restricting the formulae.

Related work There is a lot of work done in the area of
spatio-temporal logics, for example formalisms based on
modal logic like in [2] or spatio-temporal logics [5] based
on the Region Connection Calculus by Randell, Cui and
Cohn [12] with a lot of applications in AI. But these ap-
proaches do not allow to measure time and space. A quan-
titative measure is possible in [14] but it does not consider
time and space explicitly. It uses general metric spaces as
models. Other approaches like [9] adopt theπ-calculus [10]
or ambient-calculus notion of mobility for a different appli-
cation domain.

Perspectives We would like to apply this formalism to
several case studies to derive a set of lightweight rules that
make the handling of this formalism in practice easier. To
give tool support, this should be accompanied by extending
and implementing the decision procedures found so far.

Acknowledgements The author thanks E.-R. Olderog
and the members of the “Correct System Design” group, es-
pecially J. Hoenicke and M. Möller for fruitful discussions
on this topic.

References

[1] R. Alur and D. L. Dill. A theory of timed automata.Theo-
retical Computer Science, 126(2):183–235, 1994.

[2] B. Bennett and A. Cohn. Multi-Dimensional Multi-Modal
Logics as a Framework for Spatio-Temporal Reasoning.Ap-
plied Intelligence, 17(3):239–251, 2002.

[3] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev.
Many-Dimensional Modal Logics: Theory and Applica-
tions. Elsevier, 2003.

[4] D. M. Gabbay. Fibring Logics. Oxford University Press,
Oxford, 1999.

[5] A. Galton. Towards a qualitative theory of movement. In
Spatial Information Theory, pages 377–396, 1995.

[6] D. Giammarresi and A. Restivo. Handbook of For-
mal Languages – Beyond Words, volume 3, chapter Two-
Dimensional Languages, pages 215–267. Springer, 1997.

[7] M. R. Hansen and Zhou Chaochen. Duration Calculus: Log-
ical Foundations.Formal Aspects of Computing, 9:283–330,
1997.

[8] M. R. Hansen and Zhou Chaochen.Duration Calculus: A
Formal Approach to Real-Time Systems. EATCS: Mono-
graphs in Theoretical Computer Science. Springer, 2004.

[9] S. Merz, M. Wirsing, and J. Zappe. A Spatio-Temporal
Logic for the Specification and Refinement of Mobile Sys-
tems. In M. Pezzè, editor,FASE 2003, Warsaw, Poland, vol-
ume 2621 ofLNCS, pages 87–1014. Springer, 2003.

[10] R. Milner. Communicating and mobile systems: theπ-
calculus. Cambridge University Press, 1999.

[11] P. Pandya. Specifying and deciding qauntified discrete-time
duration calculus formulae using dcvalid. Technical report,
Tata Institute of Fundamental Research, 2000.

[12] D. A. Randell, Z. Cui, and A. Cohn. A Spatial Logic Based
on Regions and Connection. In B. Nebel, C. Rich, and
W. Swartout, editors,KR’92., pages 165–176. Morgan Kauf-
mann, San Mateo, California, 1992.

[13] A. Schäfer. A Calculus for Shapes in Time and Space. In
Z. Liu and K. Araki, editors,ICTAC 2004, volume 3407 of
LNCS, pages 463–478. Springer, 2005.

[14] F. Wolter and M. Zakharyaschev. Reasoning about dis-
tances. In G. Gottlob and T. Walsh, editors,IJCAI-03, Aca-
pulco, Mexico, August 9-15, 2003, pages 1275–1282. Mor-
gan Kaufmann, 2003.

[15] Zhou Chaochen, C. Hoare, and A. Ravn. A calculus of du-
rations.IPL, 40(5):269–276, 1991.

